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Abstract. It is well known that among all probabilistic graphical
Markov models the class of decomposable models is the most advan-
tageous in the sense that the respective distributions can be expressed
with the help of their marginals and that the most efficient computa-
tional procedures are designed for their processing (for example profes-
sional software does not perform computations with Bayesian networks
but with decomposable models into which the original Bayesian network
is transformed). This paper introduces a definition of the counterpart of
these models within Dempster-Shafer theory of evidence, makes a survey
of their most important properties and illustrates their efficiency on the
problem of approximation of a “sample distribution” for a data file with
missing values.

1 Introduction

For data analysis, data preprocessing and management of missing values form
an important step substantially influencing the expected results. This concerns
in particular the analysis performed with the help of “classical” statistical pro-
cedures based on probability. The situation is changing fundamentally when one
starts considering models within Dempster-Shafer theory of evidence [13]. In
this theory (and it is the main difference with probability theory) one can eas-
ily model ignorance and therefore missing data may remain missing - unknown.
Unfortunately, nothing is free and this advantage is paid by an increase of com-
putational complexity. This is due to the fact that a basic assignment, in contrast
to a probability distribution, cannot be represented by a point function. There-
fore any idea decreasing computational complexity of the necessary procedures
is desirable.

The goal of this paper is to show that within the framework of Dempster-
Shafer theory one can construct decomposable models and that their repre-
sentation is much less space-demanding than general Dempster-Shafer models.
Moreover, by an example of data approximation with the help of a decomposable
model we show that we gain not only an efficient representation of basic assign-
ments but also possibility to design efficient (“local”) computational procedures.
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After introducing the necessary notation we will define an operator of com-
position, which plays a leading role in the definition of decomposable models.
When introducing these models in Section 3 we will also deal with the concepts
of independence and bring reasons in favor of a (relatively) new definition of
conditional independence in Dempster-Shafer theory.

2 Basic Notion

2.1 Set Notation

In the whole paper we shall deal with a finite number of variables X1, X2, . . . , Xn

each of which is specified by a finite set Xi of its values. So, we will consider
multidimensional space of discernment

XN = X1 × X2 × . . . × Xn,

and its subspaces . For K ⊂ N = {1, 2, . . . , n}, XK denotes a Cartesian product
of those Xi, for which i ∈ K:

XK =×i∈KXi.

A projection of x = (x1, x2, . . . , xn) ∈ XN into XK will be denoted x↓K , i.e. for
K = {i1, i2, . . . , i�}

x↓K = (xi1 , xi2 , . . . , xi�
) ∈ XK .

Analogously, for K ⊂ L ⊆ N and A ⊂ XL, A↓K will denote a projection of A
into XK :

A↓K = {y ∈ XK : ∃x ∈ A (y = x↓K)}.
Let us remark that we do not exclude situations when K = ∅. In this case
A↓∅ = ∅.

Set A ⊆ XN is said to be a point-cylinder if it can be expressed as a Cartesian
product of a singleton and a subspace XL. More precisely: a point-cylinder is a
set A ⊆ XN for which there exists an index set (possibly empty) L ⊆ N such
that |C↓L| ≤ 1 and

C = C↓L × XN\L.

Let us stress that if L = ∅ then C = XN (it is the only situation when |C↓L| < 1),
and when L = N then |C| = 1, C is a singleton.

In addition to the projection, in this text we will also need the opposite
operation which is called a join. By a join of two sets A ⊆ XK and B ⊆ XL we
understand a set

A ⊗ B = {x ∈ XK∪L : x↓K ∈ A & x↓L ∈ B}.

Notice that if K and L are disjoint then the join of the corresponding sets is
just their Cartesian product A ⊗ B = A × B. For K = L, A ⊗ B = A ∩ B. If
K ∩ L 
= ∅ and A↓K∩L ∩ B↓K∩L = ∅ then also A ⊗ B = ∅.
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In view of this paper it is important to realize that if x ∈ C ⊆ XK∪L, then
x↓K ∈ C↓K and x↓L ∈ C↓L, which means that always

C ⊆ C↓K ⊗ C↓L.

However, it does not mean that C = C↓K ⊗ C↓L.

2.2 Assignment Notation

The role of a probability distribution from a probability theory is in Dempster-
Shafer theory played by any of the set functions: belief function, plausibility
function or basic (probability or belief ) assignment. Knowing one of them, one
can deduce the two remaining. In this paper we shall use exclusively basic as-
signments.

A basic assignment m on XK (K ⊆ N) is a function

m : P(XK) −→ [0, 1],

for which ∑

∅�=A⊆XK

m(A) = 1.

For the sake of this paper it is reasonable to consider only normalized basic
assignments, for which m(∅) equals always 0. If m(A) > 0, then A is said to be
a focal element of m.

Having a basic assignment m on XK one can consider its marginal assignment
on XL (for L ⊆ K), which is defined (for each ∅ 
= B ⊆ XL):

m↓L(B) =
∑

A⊆XK :A↓L=B

m(A).

Basic assignment m is said to be Bayesian if all its focal elements are singletons
(i.e. m(A) > 0 =⇒ |A| = 1). Basic assignment m is said to be cylindrical if all
its focal elements are point-cylinders. Since each singleton is a point-cylinder, it
is obvious that a Bayesian basic assignments is also cylindrical. An advantage
of Bayesian and cylindrical basic assignments is that the number of possible
focal elements does not grow up superexponentially (as it is for general basic
assignments) with the number of dimensions but only exponentially.

2.3 Operator of Composition

Definition 1. For two arbitrary basic assignments m1 on XK and m2 on XL

(K 
= ∅ 
= L) a composition m1 � m2 is defined for each C ⊆ XK∪L by one of
the following expressions:

[a] if m↓K∩L
2 (C↓K∩L) > 0 and C = C↓K ⊗ C↓L then

(m1 � m2)(C) =
m1(C↓K) · m2(C↓L)

m↓K∩L
2 (C↓K∩L)

;
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[b] if m↓K∩L
2 (C↓K∩L) = 0 and C = C↓K × XL\K then

(m1 � m2)(C) = m1(C↓K);

[c] in all other cases (m1 � m2)(C) = 0.

First of all we want to stress that the operator of composition is something
else than the famous Dempster’s rule of combination [4]. For example it is (in
contrary to Dempster’s rule) neither commutative nor associative. In [9,8] we
proved a number of properties concerning the operator of composition. In view
of the forthcoming text the following ones are the most important(m1 and m2

are basic assignments defined on XK ,XL, respectively):

(i) m1 � m2 is a basic assignment on XK∪L;
(ii) (m1 � m2)↓K = m1;
(iii) m1 � m2 = m2 � m1 ⇐⇒ m↓K∩L

1 = m↓K∩L
2 ;

(iv) If A ⊆ XK∪L is a focal element of m1 � m2 then A = A↓K ⊗ A↓L;
(v) If m1 and m2 are cylindrical then m1 � m2 is also cylindrical.

3 Decomposable Models

3.1 Conditional Independence

First, let us present a generally accepted notion of unconditional independence1

([1,14,16]).

Definition 2. Let m be a basic assignment on XN and K, L ⊂ N be nonempty
disjoint. We say that groups of variables XK and XL are independent2 with
respect to basic assignment m (in notation K ⊥⊥ L [m]) if for all A ⊆ XK∪L

m↓K∪L(A) = (m↓K ∩©m↓L)(A↓K∪L).

Symbol ∩© denotes the famous conjunctive combination rule (non-normalized
Dempster’s rule of combination). It was proved in [8] that Definition 2 is equiv-
alent to the following Definition 2a.

Definition 2a. Let m be a basic assignment on XN and K, L ⊂ N be nonempty
disjoint. We say that groups of variables XK and XL are independent with
respect to basic assignment m if for all A ⊆ XK∪L

m↓K∪L(A) =

{
m↓K(A↓K) · m↓L(A↓L) if A = A↓K × A↓L,

0 otherwise.

1 Some authors call it marginal independence.
2 Couso et al. [3] call this independence independence in random sets, Klir [11] (non-

interactivity)).
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Though it it not obvious these definitions are equivalent to each other. However,
when considering a generalization of these definitions to the conditional case we
can get different notions. Most of the authors use the generalization based on
Definition 2 (see for example papers [2,3,11,14,15,16]). In this text we will use a
simple and straightforward generalization of Definition 2a, which was introduced
in [6] and [8], and which can hardly be expressed with the help Dempster’s
rule of combination (or with the help of its non-normalized version: conjunctive
combination rule). The resulting notion differs from the notion of conditional
independence used, for example, by Shenoy [14] and Studený [16] (their notion
of conditional independence is the same as the conditional non-interactivity used
by Ben Yaghlane et al. in [2]).

Definition 3. Let m be a basic assignment on XN and K, L, M ⊂ N be disjoint,
K 
= ∅ 
= L. We say that groups of variables XK and XL are conditionally
independent given XM with respect to m (and denote it by K ⊥⊥ L|M [m]), if
for any A ⊆ XK∪L∪M such that A = A↓K∪M ⊗ A↓L∪M the equality

m↓K∪L∪M(A) · m↓M (A↓M ) = m↓K∪M (A↓K∪M ) · m↓L∪M (A↓L∪M )

holds true, and m↓K∪L∪M(A) = 0 for all the remaining A ⊆ XK∪L∪M , for which
A 
= A↓K∪M ⊗ A↓L∪M .

Our definition (in the same way as the definition used in [2,14,16]) meets the
following important properties:

• for M = ∅ the concept coincides with Definition 2;
• the notion meets all the properties required from the notion of conditional

independence, so-called semigraphoid properties ([12,16,17]):

(A1) K ⊥⊥ L |M [m] =⇒ L ⊥⊥ K |M [m];

(A2) K ⊥⊥ L ∪ M | J [m] =⇒ K ⊥⊥ M | J [m];

(A3) K ⊥⊥ L ∪ M | J [m] =⇒ K ⊥⊥ L |M ∪ J [m];

(A4) (K ⊥⊥ L |M ∪ J [m]) & (K ⊥⊥ M | J [m]) =⇒ K ⊥⊥ L ∪ M | J [m].

The main differences between our definition and that used in [2,14,16]) are the
following

• our definition does not suffer from the inconsistency with marginalization3 ;
• for our notion, the Dempster-Shafer counterpart to the probabilistic factor-

ization lemma has been proved in [7].

3 As it was showed by Studený, when the definition used in [2,14,16] is accepted, then
it can happen that for two consistent overlapping basic assignments there does not
exist their common extension with the required conditional independence property
(for the Studený’s example see [2,8]).
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3.2 Decomposition

Consider a sequence K1, K2, . . . , Kr meeting the running intersection property
(RIP), i.e. the sequence for which for all i = 2, . . . , r there exists j, 1 ≤ j < i,
such that

Ki ∩ (K1 ∪ . . . ∪ Ki−1) ⊆ Kj .

Without a loss of generality we will assume that K1 ∪ . . . ∪ Kr = N .

Definition 4. We say that a basic assignment m is decomposable (with respect
to a sequence K1, K2, . . . , Kr meeting RIP) if

m = (. . . ((m1 � m2) � m3) � . . . � mr−1) � mr.

In [7] we showed that, analogously to probabilistic decomposable models, also
Dempster-Shafer decomposable models possess special independence structures
described in the following assertion.

Theorem 1. If a basic assignment m is decomposable with respect to a sequence
K1, K2, . . . , Kr (meeting RIP) then for all i = 2, . . . , r

(Ki \ (K1∪ . . .∪Ki−1)) ⊥⊥ ((K1∪ . . .∪Ki−1)\Ki) | (Ki ∩ (K1∪ . . .∪Ki−1)) [m].

As showed in the following example, the dependence structure of decomposable
models allows for their very efficient representation.

Example 1. Consider a 4-dimensional basic assignment on X{1,2,3,4} = X1 ×
X2 × X3 × X4, where |Xi| = 2 for all i = 1, 2, 3, 4. Since there are

2(24) − 1 = 216 − 1 = 65 535

nonempty subsets of the considered frame of discernment, this number expresses
also the maximum number of focal elements of a general basic assignment. How-
ever, the situation drastically simplifies when one considers a basic assignment
decomposable with respect (let us say) {1, 2}, {2, 3}, {3, 4} (it is obvious that
this sequence meets RIP). The simplification follows immediately from the fact
that, due to Theorem 1, there is a system of conditional independence relations
valid for basic assignment m. From this one can deduce that for all the focal
elements A of m

A = A↓{1,2} ⊗ A↓{2,3} ⊗ A↓{3,4}

holds true. This equality holds only for 657 out of 65 535 nonempty subsets of
X{1,2,3,4}. Nevertheless, thanks to the fact that

m = m↓{1,2} � m↓{2,3} � m↓{3,4},

we do not need to store basic assignment m but only its three marginals m↓{1,2},
m↓{2,3} and m↓{3,4}. Each of them has at most 15 focal elements and therefore
one needs only 45 numbers to represent this 4-dimensional decomposable basic
assignment.
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4 Approximation of a Primitive Sample Assignment

In this section we will show that application of decomposable models may result
not only in possibility to store multidimensional4 basic assignments but also in
possibility to compute with them using “local” computational procedures. Let
us illustrate this possibility by the way of example of approximation of a data
file with the help of a decomposable basic assignment. The reader is asked to
keep in mind that it is just an illustration. We do not propose to realize the
following primitive procedure for practical applications. Because of lack of space
we cannot present here any more sophisticated process based on more complex
ideas like the procedures studied in [5].

Having a data file with missing values one can quite naturally assign to each
data record a point-cylinder C = C↓L × XN\L from XN expressing that the
record contains |L| specific data values corresponding to C↓L and |N \L| missing
values. By a primitive sample assignment we will understand a basic assignment
m, where value m(C) is computed as a relative frequency (within the data file)
of records assigned with point cylinder C. It means that any primitive sample
assignment is cylindrical.

The approximation task is to find a decomposable basic assignment m, which
is in a sense best approximation of the primitive sample assignment for a given
data file. For this one has to specify a criterion according to which a “goodness”
of the approximation is evaluated. To do so one can consider a number of possible
divergences proposed in literature (for a nice survey see [10]). However, not all
of them are such that they make the “local” computations possible. As the
simplest example of a suitable distance let us consider a “relative entropy” type
of divergence defined

Div(m; m̄) =
∑

A⊆F(m)

m(A) log
m(A)
m̄(A)

,

where m is the primitive basic assignment to be approximated, m̄ is an ap-
proximating decomposable basic assignment and F(m) ⊂ XN is the set of focal
elements of m. It is well known that this divergence is always nonnegative, equals
0 if and only if m = m̄ and if

m(A) > 0 =⇒ m̄(A) > 0 (1)

then it is also finite.
Consider a sequence K1, K2, . . . , Kr meeting RIP such that K1∪. . .∪Kr = N ,

and an arbitrary basic assignment ¯̄m decomposable with respect to K1, . . . , Kr.
Further define a decomposable basic assignment constructed from the marginals
of m

m̄ = (. . . ((m↓K1 � m↓K2) � m↓K3) � . . . � m↓Kr−1) � m↓Kr . (2)

4 When speaking about multidimensionality in connection with Dempster-Shafer the-
ory we have in mind several tens rather than hundreds of dimensions.
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It is not difficult to show that for m̄ defined by formula (2) implication (1) is
valid (this is because we assume that m is cylindrical and for a cylinder A,
A = A↓K ⊗ A↓L always holds true) and so we get that Div(m; m̄) is finite.
Moreover

Div(m; m̄) ≤ Div(m; ¯̄m).

This is why it is enough to look for an approximation of m in the form of a
compositional model (2)5.

Let us now show that the search for the best approximation of a basic assign-
ment m (i.e. for the most advantageous sequence K1, K2, . . . , Kr meeting RIP)
can be based on “local” computations only, i.e. that the procedure stores only
and computes with marginal basic assignments m↓Ki .

To make our consideration more lucid, consider first r = 2. For this

Div(m; m̄) =
∑

A⊆F(m)

m(A) log
m(A)

(m↓K1 � m↓K2)(A)
.

The following modifications are correct because for A ⊆ F(m)

m↓K1∩K2(A↓K1∩K2) > 0

and therefore value of (m↓K1 � m↓K2)(A) is positive and computed according to
case [a] of Definition 1.

Div(m; m̄) =
∑

A⊆F(m)

m(A) log
m(A)

(m↓K1 � m↓K2)(A)

=
∑

A⊆F(m)

m(A) log
m(A) · m↓K1∩K2(A↓K1∩K2)
m↓K1(A↓K1) · m↓K2(A↓K2)

=
∑

A⊆F(m)

m(A) log m(A) +
∑

A⊆F(m)

m(A) log m↓K1∩K2(A↓K1∩K2)

−
∑

A⊆F(m)

m(A) log m↓K1(A↓K1) −
∑

A⊆F(m)

m(A) log m↓K2(A↓K2).

The second term of the last expression can be simplified in the following way
∑

A⊆F(m)

m(A) log m↓K1(A↓K1) =
∑

B⊆F(m↓K1)

∑

A ⊆ F(m)

A↓K1 = B

m(A) log m↓K1(A↓K1)

=
∑

B⊆F(m↓K1)

log m↓K1(B)
∑

A ⊆ F(m)

A↓K1 = B

m(A)

=
∑

B⊆F(m↓K1)

m↓K1(B) log m↓K1(B).

5 Notice that in spite of the fact that the described approximation does not decrease
the number of focal elements, it can be very efficiently represented.
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Denoting
H(m↓K1) = −

∑

B⊆F(m↓K1)

m↓K1(B) log m↓K1(B),

and using analogous symbols also for the other marginals of m we get

Div(m; m̄) = H(m↓K1) + H(m↓K2) − H(m↓K1∩K2) − H(m).

Repeating the above computations for a general r one gets

Div(m; m̄) = H(m↓K1) +

(
r∑

i=2

H(m↓Ki) − H(m↓Ki∩(K1∪...∪Ki−1))

)
− H(m).

This formula shows that when searching for a suitable sequence K1, K2, . . . , Kr

meeting RIP one can omit the term H(m) because it appears in all compared
expressions. Moreover, when modifying the sequence K1, K2, . . . , Kr only slightly
one usually does not need to recompute all the terms

(
H(m↓Ki) − H(m↓Ki∩(K1∪...∪Ki−1))

)

but only some of them. These properties indicate that a quite efficient method
searching for a suboptimal approximation can easily be designed.

5 Conclusions

In the paper we supported a relatively new notion of conditional independence
for Dempster-Shafer theory of evidence. This notion was first introduced in [6]
(in that paper under the name of conditional irrelevance, though) and later
also in [8] and [7], where its theoretical properties were studied. It appears
that our notion (in comparison with the notion usually used by other authors
[2,3,11,14,15,17,16]) possesses more properties of the probabilistic notion of con-
ditional independence: here we have in mind especially that it does not suffer
from the inconsistency with marginalization [2] and that it enables us to prove
the factorization lemma. And it is these very properties that enables us to define
decomposable models within Dempster-Shafer theory. Perhaps we do not need
to stress that we believe that the introduced decomposable models, just as the
probabilistic decomposable models, will allow us to design efficient computa-
tional procedures for computation in Dempster-Shafer theory.
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6. Jiroušek, R.: On a conditional irrelevance relation for belief functions based on
the operator of composition. In: Beierle, C., Kern-Isberner, G. (eds.) Dynamics of
Knowledge and Belief, Proceedings of the Workshop at the 30th Annual German
Conference on Artificial Intelligence, Fern Universität in Hagen, Osnabrück, pp.
28–41 (2007)
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